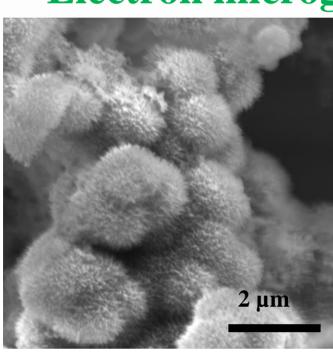
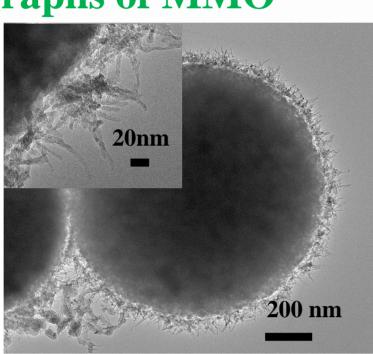
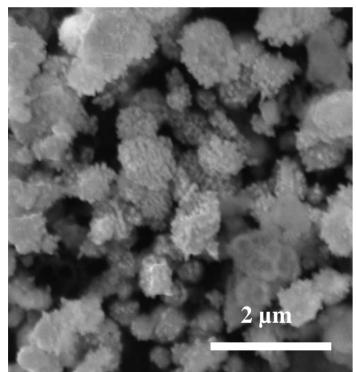
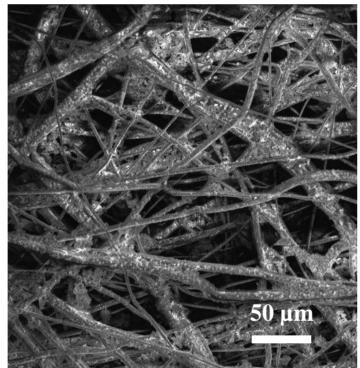
Metal oxide –Ag based antimicrobial coating for masks and surfaces


Abstract


Nanoformulation consisting of a mixture of spiky metal oxides (MMO) with silver nanoparticles and surfactants is prepared by a wet chemical method. The nanoformulation possesses excellent antimicrobial property due to its physical effects from spiky morphology and chemical effects from binding of surfactants, metal and reactive oxygen.

Preparation of nanoformulation


- The nanoformulation is obtained by hydrothermal method & chemical deposition
- Synthesis method is facile, economical and easily scalable


Electron micrographs of MMO

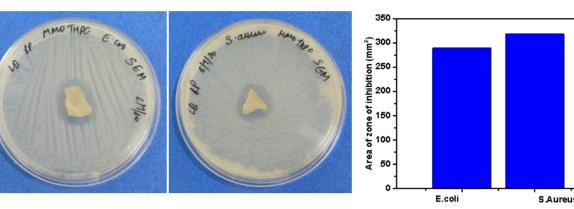
Electron micrographs of nanoformulation coated substrate and meltblown fabric

- The synthesized MMO has a spiky morphology with spike diameter $\sim\!4\text{-}5$ nm and $\sim 60\text{-}80$ nm length
- The size of the MMO is $\sim 1-1.3 \mu m$

Future Scope

- Antiviral nanoformulation against air borne viruses (enveloped and non enveloped)
- Self-cleaning face mask
- Nanoformulation coated bandages and diapers

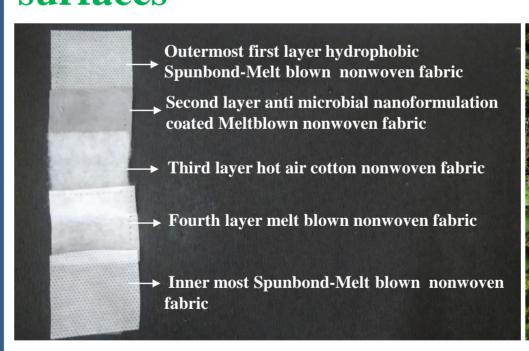
Contributors


Dr. Neena S John Ms. Ramya Prabhu B

Acknowledgement

Greenhouse - TBI Project, CeNS,
Bengaluru for funding
CellKraft Biotech Pvt. Ltd. Bengaluru
for antimicrobial studies

Antimicrobial Studies


Antibacterial activity of nanoformulation coated mask fabric by plate diffusion method and MIC

- 100.00 50.00 0.00 0.02 0.4 0.6 0. Concentration (in mg/mL)
- The synthesized material shows excellent inhibition against both gram positive and gram negative bacteria
- The minimum inhibition concentration (MIC) of nanoformulation is 107 $\mu g/mL$ against S.aureus bacteria
- The minimum concentration of nanoformulation required to kill 99.9% of bacteria is 2.5 mg/mL
- The coated mask fabric is highly reusable by heating at 85 °C or exposing to sunlight or UV LED
- The healthy mouse fibroblast cells are highly viable in moderate dosage of nanoformulation. The developed nanoformulation is less cytotoxic to the healthy cells

Prototypes developed

Configuration of antimicrobial mask, prototype of developed face mask & antimicrobial spray for surfaces

Plausible mechanism of deactivation of pathogens by the developed face mask

- The outermost (first) layer being hydrophobic repels the virus aerosols
- Second layer contains the developed nanocoating and any virus that comes in contact with the membrane gets deactivated by nanoformulation
- The oily lipid layer of the virus will be dissolved by the surfactant
- The silver nanoparticles will bind to the protein spikes and help to deactivate the virus
- Mixed metal oxides possess broad spectrum of antiviral and antibacterial properties responsible for deactivating the virus irreversibly