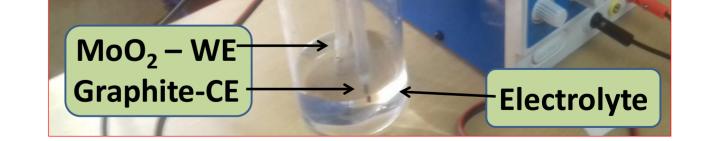

Highly 'Robust' MoO₂ Nanostructures for **Electrochemical Hydrogen Generation** CeNS

- > Immense energy demand & the need for sustainable and clean sources have driven Hydrogen (H_2) production & storage in a cost-effective way.
- \succ High cost and paucity of Pt the bench mark catalyst
- > MoO₂ nanostructures as alternate catalysts for hydrogen evolution reaction (HER)


 MoO_2 system

- 4 Hydrogen annealed MoO₂ (H-MoO₂) grown as film on fluorine-doped tin oxide (FTO) substrates
- Low onset potential of 72 mV demonstrated with 3 electrode configuration

 \checkmark 2 Electrode system – MoO₂/FTO as cathode; graphite rod as anode \checkmark Electrolyte: 0.5 M H₂SO₄; H₂ gas sensor (MQ-8); range: 10-10000 ppm. Highlight – Excellent stability . Sonication test with bath sonicator in 0.5 M H₂SO₄ ↔ 100% Stable upto 6h; after 24 hr ≥90% Display – H₂ value Electrochemical – several thousands of cycles Voltage source Ambient – stable & active at least up to 6 months H₂ - sensor

Comparison with Commercial Catalyst

Catalyst	Electrolyte	Onset	Overpotential @10 mA/cm ²	Reference
20 wt% Pt/C	0.5 M H₂SO₄	37 mV	69 mV	Chem. Eur. J., 2018,
H-MoO ₂ /FTO Contributors:	0.5 M H₂SO₄	72 mV	171 mV	doi:10.1002/chem.201803570

Vivek Ramakrishnan and Neena S. John